首页> 外文OA文献 >A Rigid Image Registration Based on the Nonsubsampled Contourlet Transform and Genetic Algorithms
【2h】

A Rigid Image Registration Based on the Nonsubsampled Contourlet Transform and Genetic Algorithms

机译:基于非下采样Contourlet变换和遗传算法的刚性图像配准

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Image registration is a fundamental task used in image processing to match two or more images taken at different times, from different sensors or from different viewpoints. The objective is to find in a huge search space of geometric transformations, an acceptable accurate solution in a reasonable time to provide better registered images. Exhaustive search is computationally expensive and the computational cost increases exponentially with the number of transformation parameters and the size of the data set. In this work, we present an efficient image registration algorithm that uses genetic algorithms within a multi-resolution framework based on the Non-Subsampled Contourlet Transform (NSCT). An adaptable genetic algorithm for registration is adopted in order to minimize the search space. This approach is used within a hybrid scheme applying the two techniques fitness sharing and elitism. Two NSCT based methods are proposed for registration. A comparative study is established between these methods and a wavelet based one. Because the NSCT is a shift-invariant multidirectional transform, the second method is adopted for its search speeding up property. Simulation results clearly show that both proposed techniques are really promising methods for image registration compared to the wavelet approach, while the second technique has led to the best performance results of all. Moreover, to demonstrate the effectiveness of these methods, these registration techniques have been successfully applied to register SPOT, IKONOS and Synthetic Aperture Radar (SAR) images. The algorithm has been shown to work perfectly well for multi-temporal satellite images as well, even in the presence of noise.
机译:图像配准是图像处理中用于匹配从不同传感器或不同视点在不同时间拍摄的两个或多个图像的基本任务。目的是在巨大的几何变换搜索空间中找到在合理时间内可以接受的准确解决方案,以提供更好的配准图像。穷举搜索的计算量很大,并且随着转换参数的数量和数据集的大小,计算成本呈指数增长。在这项工作中,我们提出了一种有效的图像配准算法,该算法在基于非二次采样轮廓波变换(NSCT)的多分辨率框架内使用遗传算法。为了最小化搜索空间,采用了一种自适应的遗传算法进行注册。这种方法在采用健身共享和精英两种技术的混合方案中使用。提出了两种基于NSCT的注册方法。在这些方法和基于小波的方法之间建立了比较研究。由于NSCT是不变位移的多方向变换,因此采用第二种方法来提高搜索速度。仿真结果清楚地表明,与小波方法相比,这两种提议的技术都是非常有前途的图像配准方法,而第二种技术已使所有方法获得了最佳性能。此外,为了证明这些方法的有效性,这些配准技术已成功应用于配准SPOT,IKONOS和合成孔径雷达(SAR)图像。该算法已被证明对于多时相卫星图像也非常有效,即使存在噪声也是如此。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号